

PICO1TR Description

The PICO1TR is a low-cost microcontroller development board that is compatible with the Arduino development tools. The board is 2.1 " x 1 " and all the I/O pins from the ATmega168/328 are brought out on 2 rows of 14 pins (300mil spacing).

Features

- $2.1 " \times 1 "$
- Replaceable and upgradeable CPU
- Compatible with the Arduino development tools.
- ATmega328P running at 12 MHz
- Adjustable Linear Regulator ($V_{c c}=3.3 \mathrm{~V}$ to 5 V) Output voltage is set by changing one resistor. Resistors for 3.3 V and 5 V operation are included.
- Two rows of 14 pins (300 mil spacing) with all ATmega168/328 I/O functions.
- Six pin header for FTDI TTL-232R-3V3 cable.
- Debug LED that can be jumpered to Pin 7 or disconnected.
- A/D reference supply filtered per Atmel specification.
- Reset circuit per Atmel specification.

1 Assembling the PICO1TR

(2)Semiconductors are electrostatic-sensitive devices. Il Proper ESD handling precautions need to be taken to avoid damage.

(2)Do not cut any of the U1 socket pins until you have II determined which pins are needed in your application. All of the PICO1TR I/O pins are the U1 socket pins. See subsection 1.6 for pin removal information.

The Bill of Materials (BOM) and Component List are in section 5. For full page assembly drawings see Figure 1 (top) and Figure 2 (bottom).

The kit includes resistors to trim the output regulator to 3.3 V or 5 V . When you are done assembling the kit you will have one extra resistor. If you have build a 3.3 V board you will have a $1 \mathrm{~K} \Omega$ resistor left. If you have built a 5 V board you will have either a 205 or 210Ω resistor left.

1.1 Bottom Side Components

- D1

Line the cathode marking on D1 with the cathode marking on the silkscreen

- L1

The value of inductor L1 is not critical. Kits will contain an inductor with a value between $10 \mu \mathrm{H}$ and $20 \mu \mathrm{H}$

- R1
$10 \mathrm{~K} \Omega$ (brown, black, black, red, brown)
- C12 (optional, not included)

C12 is a noise reduction capacitor for the LDO regulator (U4). It is not required for most applications and is not included in the kit. The suggested value in the manufacturer's datasheet is $0.1 \mu \mathrm{~F}$.

1.2 Power Supply Circuit Assembly

Solder the top side components:

- C10, C11
$C 10$ and C11 are polarized parts. The long lead is the positive. The short lead is the negative. Make sure that the positive lead is inserted into positive hole in the $P C B$
- R10
124Ω (brown, red, yellow, black, brown)
- R11

For 3.3V operation this value will be either 205Ω (red, black, green, black, brown) or 210Ω (red, brown, black, black, brown) For 5V operation this value will be 374Ω (orange, violet, yellow, black, brown)

- U10

Make sure that the tab is aligned to the tab marking on the $P C B$.

- J10

1.3 Microcontroller Circuit Assembly

Solder the top side components:

- C1, C2, C3, C13, C4 (optional).

C4 is optional and is not included in the kit. It is meant for applications that require additional filtering of the reset line. The reset function that uses the /RTS line from the USB interface will not function with C4 installed.

- D2

The negative lead of the LED is the short lead. Align the short lead with the negative marking on the PCB.

- R2

For $3.3 V$ operation use the 374Ω (orange, violet, yellow, black, brown). For 5 V operation use the $1 \mathrm{~K} \Omega$ (brown, black, black brown, brown)

- R3
$10 \mathrm{~K} \Omega$ (brown, black, black, red, brown)
- J3
- J5
- X1, C5, C9
- U1 (socket)

1.4 Electro-mechanical Components

Since the reset switch is sensitive to washing it should be placed on last. Lightly clean the board after the swicth is installed. If water does get into the switch let it dry out before applying power.
Solder the top side components:

- S1

1.5 IC Installation and Test

Remove the ATmega328P from the antistatic foam and insert it into the socket aligning the notch in the IC package with the notch mark indicated on the PCB silkscreen. Be careful to align pins on both sides of the socket prior to pressing the IC into the socket.

After inserting the ATmega328P into the U1 socket the microcontroller section of the PICO1TR should be fully functional. If possibly apply power through J10 with a current limited +5 V supply. The current drawn should not exceed 10 mA .

The PICO1TR should now be fully functional and is ready to program (see section 4). Depending on the application some of the pins on the U1 socket should be removed (see subsection 1.6).

1.6 Pin Removal

(2)After operation of the PICO1TR is verified it is recomII mended that some of the U1 pins be cut flush to the PCB level. Each application is different and needs to reviewed. Pins like XTAL1 and XTAL2 can be affected by stray capacitance and noise. For most applications cutting the XTAL1, XTAL2, AREF and AVCC is recommended.

If your application may change over time then leave all pins intact and use care in your layout.

1.6.1 XTAL Pins

The XTAL circuit is susceptible to stray capacitance and noise so pins 9 and 10 should be cut flush to the PCB.

1.6.2 AREF

If you are not using an external analog reference then cut pin 21 flush to the board.

1.6.3 AVCC

If you are not powering the ADC from a different source then pin 20 should be cut flush to the board.

2 IO Connectors

J5 USB header for an FTDI TTL-232R-3V3 cable.
J10 Input power jack. See subsection 3.1

3 Electrical Hints

3.1 Power Supply

The PICO1TR is powered by a DC output wall adapter with an output voltage from 5.3 V to 18 V . The input voltage is limited by the amount of power dissipated in the linear regulator (U4). This varies by application.
< It is critcal to keep the power dissipation in the LDO I. regulator (U4), to less than one watt. The voltage drop across U4 is

$$
V_{\text {drop }}=V_{\text {in }}-V_{\text {out }}
$$

Where $V_{\text {in }}$ is the input voltage connected to J 10 and $V_{\text {out }}$ is the output voltage (see subsection 3.2). The power dissipated in U4 is given by

$$
P_{\text {diss }}=V_{\text {drop }} \cdot I_{\text {system }}
$$

where $I_{\text {system }}$ is the load of the PICO1TR plus its peripheral circuitry.

3.2 Changing $V_{c c}$

$V_{c c}$, which is the output of the MC33269T regulator, is adjusted by changing the value of R11. The equation for $V_{c c}$ is -

$$
V_{c c}=1.24 \cdot \frac{124+R_{11}}{124}
$$

R_{11} values for common output voltages are listed in Table 1. The PICO1TR kits come with both values listed in the table.
R_{2} adjusts the current through the debug LED. At a forward current $\left(I_{f}\right)$ of 2 mA the LED has a typical forward voltage $\left(V_{f}\right)$ of 2 V . An I_{f} between 2 mA and 5 mA provides a reasonable brightness. The equation for R_{2} is

$$
\frac{V_{C C}-2 \mathrm{~V}}{5 \mathrm{~mA}}<R_{2}<\frac{V_{C C}-2 \mathrm{~V}}{2 \mathrm{~mA}}
$$

Recommended R_{2} values are shown in Table 1.

$V_{c c}(\mathrm{volts})$	$R_{11}(\mathrm{ohms})$	$R_{2}(\mathrm{ohms})$
3.3	205	374
5.0	374	1000

Table 1: R_{11} and R_{2} values for 3.3 V and 5 V Operation

3.3 Pinout

The input and output pins for the PICO1TR are the socket pins of the microcontroller (U1). The pinout is listed in Table 2.

Pin Number	Pin Name	Arduino Number	Notes
2	RXD	0	
3	TXD	1	
4	PD2	2	
5	PD3	3	
6	PD4	4	
11	PD5	5	
12	PD6	6	
13	PD7	7	Debug LED
14	PB0	8	
15	PB1	9	
16	PB2	10	
17	PB3	11	MOSI
18	PB4	12	MISO
19	PB5	13	SCK
23	PC0	A0	
24	PC1	A1	
25	PC2	A2	
26	PC3	A3	
27	PC4	A4	SDA
28	PC5	A5	SCL
1	Reset		
9	XTAL1		PB6
10	XTAL2		PB7
7	VCC		
20	AVCC		
21	AREF		
8	GND		
22	GND		

Table 2: U1 Pinout

3.4 Debug LED

The debug LED, D2, can be connected to U1 pin 13 (PD7) of the ATmega328P or left disconnected. U1 pin 13 corresponds to Arduino pin 7

LED jumper in the disconnected position

LED jumper in the PD7 position

4 Programming the PICO1TR

The PICO1TR can be programmed using the Arduino tools (version 0011 or later).

4.1 Selecting the proper board

In order for the Arduino tools to recognize the wiblocks boards additional lines need to be added to the boards.txt file. The additional lines are shown in Listing 1 (with annotations). A file containing these adddions can be downloaded from wiblocks. Once boards.txt is modified select either wiblocks 168 at 12 MHz or wiblocks 328 at 12 MHz from the Tools->Board menu.

4.2 Downloading a program to the PICO1TR

The PICO1TR must be rebooted to start the program download. This can be done by pressing the reset button S1 immediately before starting the download. If your USB port is configured to set RTS on close then the reset will occur automatically.

```
Listing 1: boards.txt Modifications for the PICO1TR
wiblocks_168.name=wiblocks 168 at 12MHz
wiblocks_168.upload.protocol=stk500
wiblocks_168.upload.maximum_size=14336
wiblocks_168.upload. speed=19200
wiblocks_168.bootloader.low_fuses=0xff
wiblocks_168.bootloader.high_fuses=0xdd
wiblocks_168.bootloader.extended_fuses=0x00
wiblocks_168.bootloader.path=atmega168
wiblocks_168.bootloader.file=wiblocks_168.hex
wiblocks_168.bootloader.unlock_bits=0x3F
wiblocks_168.bootloader.lock_bits=0x0F
wiblocks_168.build .mcu=atmega168
wiblocks_168.build.f_cpu=12000000L
wiblocks_168.build.core=arduino
wiblocks_328.name=wiblocks 328 at 12MHz
wiblocks_328.upload.protocol=stk500
wiblocks_328.upload . maximum_size= =30720
wiblocks_328.upload . speed=19200
wiblocks_328.bootloader.low_fuses=0xff
wiblocks_328.bootloader.high_fuses=0xdd
wiblocks_328.bootloader.extended_fuses=0x00
wiblocks_328.bootloader.path=atmega328
wiblocks_328.bootloader.file=wiblocks_328.hex
wiblocks_328.bootloader.unlock_bits=0x3F
wiblocks_328.bootloader.lock_bits=0x0F
wiblocks_328.build .mcu=atmega328p
wiblocks_328.build.f_cpu=12000000L
wiblocks_328.build . core=arduino
```


References

Atmel. (2009). 8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash. (Retrieved March 14, 2009, from http://www.atmel.com/dyn/resources/prod_documents/doc8025.pdf)

5 Assembly Documentation and Schematics

Table 3: Bill of Materials

Kit:

PICO1TR-KIT

Qty	Reference	Part Number	Description
4	C1, C2, C3, C13	CAPR-0U10-50V-X7R-100M	capacitor, ceramic, 0.1uF, 10\%, 50V, X7R
2	C5, C9	CAPR-20P0-100V-NPO-5T00	capacitor, ceramic, 20pF
2	C10, C11	CAPPR_-Nichicon_UPW1E100MDD	capacitor, Nichicon UPW1E100MDD
1	D1	DIOA-1N4148	diode, 1N4148
1	D2	LEDR-1T-GRN-2M00	LED, T1, Green
1	J3	HDR_BR-3X1-100M	header, 3x1, 100mils
1	J5	HDR_BR-6X1-100M	header, 6x1, 100mils
1	J10	CON__CUI-PJ-202AH	power jack, 2.1mm
1	L1	INDA-10UH-130M-10T0	inductor, 10uH, 10\%
2	R1, R3	RES-10K0-0W125-1T00	resistor, 10K, 1/8W, 1\%
1	R2	RES-374R-0W125-1T00	resistor, 374 Ohm, 1/8W, 1\%
1	R10	RES-124R-0W125-1T00	resistor, 124 Ohm, 1/8W, 1\%
1	R11	RES-205R-0W125-1T00	resistor, 205 Ohm, $1 / 8 \mathrm{~W}, 1 \%$
1	S1	SW_-Panasonic_EVQ-PAE04M	pushbutton
1	U1	IC__ATMEL_ATmega168-20PU	ATmega168-20PU
1	U10	VREG_-On-Semi_MC33269TG	voltage regulator, adj, 800mA, TO-220
1	X1	XTAL-12M-20P-HC49US	crystal, 12MHz, 20pF, HC49US
1		JMP_-Adamtech_MSBHG	Shunt with handle
1		DIP_WW-28P-300M	DIP Socket, 28 Pin, 300mil centers, Wire Wrap
1		wiblock_PICO1TR-PCB	
1		RES-1K00-0W125-1T00	resistor, 1K, $1 / 8 \mathrm{~W}, 1 \%$

Table 4: Component List

Kit: PICO1TR-KIT

Reference	Part Number	Description
C1	CAPR-0U10-50V-X7R-100M	capacitor, ceramic, $0.1 \mathrm{uF}, 10 \%, 50 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}$
C2	CAPR-0U10-50V-X7R-100M	capacitor, ceramic, $0.1 \mathrm{uF}, 10 \%, 50 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}$
C3	CAPR-0U10-50V-X7R-100M	capacitor, ceramic, $0.1 \mathrm{uF}, 10 \%, 50 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}$
C13	CAPR-0U10-50V-X7R-100M	capacitor, ceramic, $0.1 \mathrm{uF}, 10 \%, 50 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}$
C5	CAPR-20P0-100V-NPO-5T00	capacitor, ceramic, 20 pF
C9	CAPR-20P0-100V-NPO-5T00	capacitor, ceramic, 20 pF
C10	CAPPR_-Nichicon_UPW1E100MDD	capacitor, Nichicon UPW1E100MDD
C11	CAPPR__Nichicon_UPW1E100MDD	capacitor, Nichicon UPW1E100MDD
D1	DIOA-1N4148	diode, 1N4148
D2	LEDR-1T-GRN-2M00	LED, T1, Green
J3	HDR_BR-3X1-100M	header, 3x1, 100mils
J5	HDR_BR-6X1-100M	header, 6x1, 100mils
J10	CON_CCUI-PJ-202AH	power jack, 2.1 mm
L1	INDA-10UH-130M-10T0	inductor, $10 \mathrm{uH}, 10 \%$
R1	RES-10K0-0W125-1T00	resistor, $10 \mathrm{~K}, 1 / 8 \mathrm{~W}, 1 \%$
R3	RES-10K0-0W125-1T00	resistor, 10K, 1/8W, 1%
R2	RES-374R-0W125-1T00	resistor, 374 Ohm, $1 / 8 \mathrm{~W}, 1 \%$
R10	RES-124R-0W125-1T00	resistor, $124 \mathrm{Ohm}, 1 / 8 \mathrm{~W}, 1 \%$
R11	RES-205R-0W125-1T00	resistor, $205 \mathrm{Ohm}, 1 / 8 \mathrm{~W}, 1 \%$
S1	SW_PPanasonic_EVQ-PAE04M	pushbutton
U1	IC__ATMEL_ATmega168-20PU	ATmega168-20PU
U10	VREG_-_On-Semi_MC33269TG	voltage regulator, adj, 800 mA , TO-220
X1	XTAL-12M-20P-HC49US	crystal, $12 \mathrm{MHz}, 20 \mathrm{pF}, \mathrm{HC} 49 \mathrm{US}$
	JMP_Adamtech_MSBHG	Shunt with handle
	DIP_WW-28P-300M wiblock-PICO1TR-PCB	DIP Socket, 28 Pin, 300mil centers, Wire Wrap
	RES-1K00-0W125-1T00	resistor, $1 \mathrm{~K}, 1 / 8 \mathrm{~W}, 1 \%$

Figure 1: PICO1TR Top Side Assembly Drawing (Rev 1)

Figure 2: PICO1TR Bottom Side Assembly Drawing (Rev 1)

Figure 3: PICO1TR (Rev 1)

MC33269, NCV33269

800 mA, Adjustable Output, Low Dropout Voltage Regulator

The MC33269/NCV33269 series are low dropout, medium current, fixed and adjustable, positive voltage regulators specifically designed for use in low input voltage applications. These devices offer the circuit designer an economical solution for precision voltage regulation, while keeping power losses to a minimum.

The regulator consists of a 1.0 V dropout composite $\mathrm{PNP}-\mathrm{NPN}$ pass transistor, current limiting, and thermal shutdown

Features

- $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$ and Adjustable Versions
2.85 V version available as MC34268
- Space Saving DPAK, SO-8 and SOT-223 Power Packages
- 1.0 V Dropout
- Output Current in Excess of 800 mA
- Thermal Protection
- Short Circuit Protection
- Output Trimmed to 1.0% Tolerance
- $\mathrm{Pb}-$ Free Packages are Available
- NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes

DEVICE TYPE/NOMINAL OUTPUT VOLTAGE

MC33269D	Adj	MC33269D-5.0	5.0 V
MC33269DT	Adj	MC33269DT-5.0	5.0 V
NCV33269DTRK*	Adj	MC33269T-5.0	5.0 V
MC33269T	Adj		
MC33269D-3.3	3.3 V	MC33269D-012	12 V
MC33269DT-3.3	3.3 V	MC33269DT-012	12 V
NCV33269DTRK-3.3*	3.3 V	NCV33269DTRK-012*	12 V
MC33269T-3.3	3.3 V	MC33269T-012	12 V
MC33269ST-3.3	3.3 V		

ON Semiconductor ${ }^{\text {® }}$
http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

DEVICE MARKING INFORMATION
See general marking information in the device marking section on page 9 of this data sheet.

MC33269, NCV33269

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Input Voltage	$\mathrm{V}_{\text {in }}$	20	V
	P_{D} θ_{JA} θ_{JC} P_{D} θ_{JA} θ_{Jc} P_{D} θ_{JA} θ_{Jc} P_{D} $\theta_{J A}$ θ_{Jc}	Internally Limited 92 6.0 Internally Limited 160 25 Internally Limited 65 5.0 Internally Limited 156 15	W ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ W ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ W ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ W ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Die Junction Temperature Range	T_{J}	-40 to +150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range NC33269 NCV33269	T_{A}	$\begin{aligned} & -40 \text { to }+125 \\ & -40 \text { to }+125 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Electrostatic Discharge Sensitivity (ESD) Human Body Model (HBM) Machine Model (MM)	ESD	$\begin{gathered} 4000 \\ 400 \end{gathered}$	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{O}}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, for min/max values $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ($\mathrm{l}_{\text {out }}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) $\begin{aligned} & \text { 3.3 Suffix }\left(\mathrm{V}_{\mathrm{CC}}=5.3 \mathrm{~V}\right) \\ & \text { 5.0 Suffix }\left(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}\right) \\ & 12 \text { Suffix }\left(\mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}\right) \end{aligned}$	V_{O}	$\begin{gathered} 3.27 \\ 4.95 \\ 11.88 \end{gathered}$	$\begin{aligned} & 3.3 \\ & 5.0 \\ & 12 \end{aligned}$	$\begin{gathered} 3.33 \\ 5.05 \\ 12.12 \end{gathered}$	V
$\begin{aligned} & \text { Output Voltage (Line, Load and Temperature) (Note 1) } \\ & \left(1.25 \mathrm{~V} \leq \mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }} \leq 15 \mathrm{~V} \text {, I } \mathrm{I}_{\text {out }}=500 \mathrm{~mA}\right) \\ & \left(1.35 \mathrm{~V} \leq \mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }} \leq 10 \mathrm{~V} \text {, } \mathrm{I}_{\text {out }}=800 \mathrm{~mA}\right) \end{aligned}$	V_{O}	$\begin{gathered} 3.23 \\ 4.9 \\ 11.76 \end{gathered}$	$\begin{aligned} & 3.3 \\ & 5.0 \\ & 12 \end{aligned}$	$\begin{gathered} 3.37 \\ 5.1 \\ 12.24 \end{gathered}$	V
Reference Voltage for Adjustable Voltage $\left(\mathrm{I}_{\text {out }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {in }}-\mathrm{V}_{\text {out }}=2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{V}_{\text {ref }}$	1.235	1.25	1.265	V
Reference Voltage (Line, Load and Temperature) (Note 1) for Adjustable Voltage $\begin{aligned} & \left(1.25 \mathrm{~V} \leq \mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }} \leq 15 \mathrm{~V}, \mathrm{I}_{\text {out }}=500 \mathrm{~mA}\right) \\ & \left(1.35 \mathrm{~V} \leq \mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }} \leq 10 \mathrm{~V}, \mathrm{I}_{\text {out }}=800 \mathrm{~mA}\right) \end{aligned}$	$\mathrm{V}_{\text {ref }}$	1.225	1.25	1.275	V
Line Regulation ($\mathrm{l}_{\text {out }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {in }}=\left[\mathrm{V}_{\text {out }}+1.5 \mathrm{~V}\right]$ to $\left.\mathrm{V}_{\text {in }}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	Regline	-	-	0.3	\%
Load Regulation $\quad\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {out }}+3.0 \mathrm{~V}, \mathrm{I}_{\text {out }}=10 \mathrm{~mA}\right.$ to $\left.800 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	Regload	-	-	0.5	\%
Dropout Voltage $\begin{aligned} & \left(\mathrm{I}_{\text {out }}=500 \mathrm{~mA}\right) \\ & \left(\mathrm{I}_{\text {out }}=800 \mathrm{~mA}\right) \end{aligned}$	$\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }}$	-	$\begin{aligned} & 1.0 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.35 \end{aligned}$	V
Ripple Rejection ($10 \mathrm{~V} \mathrm{pp}^{\text {, }} 120 \mathrm{~Hz}$ Sinewave; $\left.\mathrm{I}_{\text {out }}=500 \mathrm{~mA}\right)$	RR	55	-	-	dB
Current Limit $\quad\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }}=10 \mathrm{~V}\right)$	$I_{\text {Limit }}$	800	-	-	mA
Quiescent Current (Fixed Output) $\begin{array}{rr}\left(1.5 \mathrm{~V} \leq \mathrm{V}_{\text {out }} \leq 3.3 \mathrm{~V}\right) \\ \left(5 \mathrm{~V} \leq \mathrm{V}_{\text {out }} \leq 12 \mathrm{~V}\right)\end{array}$	I_{Q}	-	5.5	$\begin{aligned} & 8.0 \\ & 20 \end{aligned}$	mA
Minimum Required Load Current $\begin{gathered}\text { Fixed Output Voltage } \\ \text { Adjustable Voltage }\end{gathered}$	$I_{\text {Load }}$	8.0	-	0	mA
Adjustment Pin Current	$\mathrm{I}_{\text {Adj }}$	-	-	120	$\mu \mathrm{A}$

1. The MC33269-12, $\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }}$ is limited to 8.0 V maximum, because of the 20 V maximum rating applied to $\mathrm{V}_{\text {in }}$.

MC33269, NCV33269

Figure 1. Internal Schematic

Figure 8. SOP-8 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

Figure 9. DPAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

Figure 10. SOT-223 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

MC33269, NCV33269

APPLICATIONS INFORMATION

Figures 11 through 15 are typical application circuits. The output current capability of the regulator is in excess of 800 mA , with a typical dropout voltage of less than 1.0 V . Internal protective features include current and thermal limiting

* The MC33269 requires an external output capacitor for stability. The capacitor should be at least $10 \mu \mathrm{~F}$ with an equivalent series resistance (ESR) of less than 10Ω but greater than 0.2Ω over the anticipated operating temperature range. With economical electrolytic capacitors, cold temperature operation can pose a problem. As temperature decreases, the capacitance also decreases and the ESR increases, which could cause the circuit to oscillate Also capacitance and ESR of a solid tantalum capacitor is more stable over temperature. The use of a low ESR ceramic capacitor placed within close proximity to the output of the device could cause instability.
** An input bypass capacitor is recommended to improve transient response or if the regulator is connected to the

An input capacitor is not necessary for stability, however it will improve the overall performance.
Figure 11. Typical Fixed Output Application

Figure 13. Current Regulator

The Schottky diode in series with the ground leg of the upper regulator shifts its output voltage higher by the forward voltage drop of the diode. This will cause the lower device to remain off until the input voltage is removed.
Figure 14. Battery Backed-Up Power Supply
supply input filter with long wire lengths. This will reduce the circuit's sensitivity to the input line impedance at high frequencies. A $0.33 \mu \mathrm{~F}$ or larger tantalum, mylar, ceramic, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with shortest possible lead or track length directly across the regulator's input terminals. Applications should be tested over all operating conditions to insure stability.
Internal thermal limiting circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When activated, typically at $170^{\circ} \mathrm{C}$, the output is disabled. There is no hysteresis built into the thermal limiting circuit. As a result, if the device is overheating, the output will appear to be oscillating. This feature is provided to prevent catastrophic failures from accidental device overheating. It is not intended to be used as a substitute for proper heat-sinking.

$$
\mathrm{V}_{\text {out }}=1.25\left(1+\frac{\mathrm{R} 2}{\mathrm{R1}}\right)+\mathrm{I}_{\mathrm{Adj}} \mathrm{R}^{2}
$$

${ }^{* * *} \mathrm{C}_{\text {Adj }}$ is optional, however it will improve the ripple rejection. The MC34269 develops a 1.25 V reference voltage between the output and the adjust terminal. Resistor R1, operates with constant current to flow through it and resistor R2. This current should be set such that the Adjust Pin current causes negligible drop across resistor R2. The total current with minimum load should be greater than 8.0 mA .

Figure 12. Typical Adjustable Output Application

R_{2} sets the maximum output voltage. Each transistor reduces the output voltage when turned on.

Figure 15. Digitally Controlled Voltage Regulator

ORDERING INFORMATION

Device	Package	Shipping Information ${ }^{\dagger}$
MC33269D	SO-8	98 Units / Rail
MC33269DG	$\begin{gathered} \mathrm{SO}-8 \\ \text { (Pb-Free) } \end{gathered}$	
MC33269DR2	SO-8	2500 Units / Tape \& Reel
MC33269DR2G	$\begin{gathered} \mathrm{SO}-8 \\ \text { (Pb-Free) } \end{gathered}$	
MC33269DT	DPAK	75 Units / Rail
MC33269DTG	DPAK (Pb-Free)	
MC33269DTRK	DPAK	2500 Units / Tape \& Reel
MC33269DTRKG	DPAK (Pb-Free)	
MC33269T	TO-220	50 Units / Rail
MC33269TG	$\begin{gathered} \text { TO-220 } \\ \text { (Pb-Free) } \end{gathered}$	
MC33269D-3.3	SO-8	98 Units / Rail
MC33269D-3.3G	$\begin{gathered} \mathrm{SO}-8 \\ \text { (Pb-Free) } \end{gathered}$	
MC33269DR2-3.3	SO-8	2500 Units / Tape \& Reel
MC33269DR2-3.3G	$\begin{gathered} \mathrm{SO}-8 \\ (\mathrm{~Pb}-\text { Free }) \end{gathered}$	
MC33269DT-3.3	DPAK	75 Units / Rail
MC33269DT-3.3G	DPAK (Pb-Free)	
MC33269DTRK-3.3	DPAK	2500 Units / Tape \& Reel
MC33269DTRK-3.3G	DPAK (Pb-Free)	
MC33269ST-3.3T3	SOT-223	4000 Units / Tape \& Reel
MC33269ST-3.3T3G	$\begin{aligned} & \text { SOT-223 } \\ & \text { (Pb-Free) } \end{aligned}$	
MC33269T-3.3	TO-220	50 Units / Rail
MC33269T-3.3G	$\begin{gathered} \text { TO-220 } \\ \text { (Pb-Free) } \end{gathered}$	
MC33269D-5.0	SO-8	98 Units / Rail
MC33269D-5.0G	$\begin{gathered} \mathrm{SO}-8 \\ (\mathrm{~Pb}-\text { Free }) \end{gathered}$	
MC33269DR2-5.0	SO-8	2500 Units / Tape \& Reel
MC33269DR2-5.0G	$\begin{gathered} \text { SO-8 } \\ \text { (Pb-Free) } \end{gathered}$	
MC33269DT-5.0	DPAK	75 Units / Rail
MC33269DT-5.0G	DPAK (Pb-Free)	
MC33269DTRK-5.0	DPAK	2500 Units / Tape \& Reel
MC33269DTRK-5.0G	DPAK (Pb-Free)	

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV prefix is for automotive and other applications requiring site and control changes.

ORDERING INFORMATION (continued)

Device	Package	Shipping Information ${ }^{\dagger}$
MC33269T-5.0	TO-220	50 Units / Rail
MC33269T-5.0G	$\begin{aligned} & \text { TO-220 } \\ & \text { (Pb-Free) } \end{aligned}$	
MC33269D-012	SO-8	98 Units / Rail
MC33269D-012G	$\begin{gathered} \text { SO-8 } \\ \text { (Pb-Free) } \end{gathered}$	
MC33269DR2-012	SO-8	2500 Units / Tape \& Reel
MC33269DR2-012G	$\begin{gathered} \text { SO-8 } \\ \text { (Pb-Free) } \end{gathered}$	
MC33269DT-012	DPAK	75 Units / Rail
MC33269DT-012G	DPAK (Pb-Free)	
MC33269DTRK-012	DPAK	2500 Units / Tape \& Reel
MC33269DTRK-012G	DPAK (Pb-Free)	
MC33269T-012	TO-220	50 Units / Rail
MC33269T-012G	$\begin{gathered} \text { TO-220 } \\ \text { (Pb-Free) } \end{gathered}$	
NCV33269DTRK*	DPAK	2500 Units / Tape \& Reel
NCV33269DTRKG*	DPAK (Pb-Free)	
NCV33269DTRK-3.3*	DPAK	
NCV33269DTRK-3.3G*	DPAK (Pb-Free)	
NCV33269DTRK-012*	DPAK	
NCV33269DTRK-012G*	DPAK (Pb-Free)	

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV prefix is for automotive and other applications requiring site and control changes.

MARKING DIAGRAMS

TO-220AB
T SUFFIX
CASE 221A

$$
\begin{array}{ll}
\text { A } & =\text { Assembly Location } \\
\text { L, WL } & =\text { Wafer Lot } \\
\text { Y } & =\text { Year } \\
\text { W, WW } & =\text { Work Week } \\
\text { G } & =\text { Pb-Free Package } \\
\text { - } & =\text { Pb-Free Package } \\
\text { (Note: Microdot may be in either location) }
\end{array}
$$

MC33269, NCV33269
PACKAGE DIMENSIONS

SO-8
D SUFFIX
CASE 751-07
ISSUE AH

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D

MC33269, NCV33269
PACKAGE DIMENSIONS

SOLDERING FOOTPRINT*

SCALE $3: 1 \quad\left(\frac{\mathrm{~mm}}{\text { inches }}\right)$
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MC33269, NCV33269
PACKAGE DIMENSIONS

> SOT-223 ST SUFFIX CASE $318 \mathrm{E}-04$ ISSUE L

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI
2. CONTROLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
c	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
E	3.30	3.50	3.70	0.130	0.138	0.145
e	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
$\boldsymbol{\theta}$	0°	-	10°	0	0°	-

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MC33269, NCV33269

PACKAGE DIMENSIONS

TO-220AB, SINGLE GAUGE

T SUFFIX
CASE 221AB-01
ISSUE O

[^0]PUBLICATION ORDERING INFORMATION
Literature FULFILLMENT
Literature Distribution Center for ON Semiconductor
Phone: $303-675-2175$ or $800-344-3860$ Toll Free USA/Canada ax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Cen
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and 01 D are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. Al operating parameters, incluading "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent righ nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, atfiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

